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Abstract

A thermodynamic foundation using the concept of internal state variables is presented for the

kinematic description of a viscoplastic material. Three different evolution equations for the

back stress are considered. The first is that of classical, nonlinear, kinematic hardening. The

other two include a contribution that is linear in stress rate. Choosing an appropriate change in

variables can remove this stress rate dependence. As a result, one of these two models is shown

to be equivalent to the classical, nonlinear, kinematic hardening model; while the other is a new

model--one which seems to have favorable characteristics for representing ratchetting behavior.

All three models are thermodynamically admissible.

Let us consider a complementary (Gibbs) free energy for the thermodynamic potential function,
i.e.

¢ = gJ[T,a_,,fluv] , flii= 0, (1)

where square brackets [.] are used to denote 'function of'. The temperature T and stress _rij

are external variables whose variations can, in principle, be controlled by an observer. However,

the evolution of the internal state variable flij--associated with kinematic hardening--cannot be

controlled by an observer; it is a material response. This variable must therefore evolve as a function

of state. Furthermore, if this kinematic variable is to remain invariant under transformation to

another kinematic variable, then its evolution will, in general, also depend upon the rates of change

in the external variables [1]. For simplicity, let us consider the following equation for the evolution

of internal state, i.e.

/)ij = xo[T,S,,,,,/_,,,] + (g/2H),_ij, (2)

where Sij = ffij -- 1/3 ffkkt_ij is the deviatoric stress with _ij representing the Kronecker delta, and
where N and H are material constants. In general, a term that is linear in T may also be introduced

into (2) [2], but it is ignored in this paper for the purpose of simplification. Notice that flij, and



therefore X.ij, are deviatoric by definition. The function :_ij describes the irreversible contribution

to the evolution of glj.

Given (1) and (2), one can derive [1, 2] relationships that govern the entropy,

-O9
s- OT ' (3)

the strain,
-09 N O_

- _ =0 (4)
eij Oaij 2H O_ij _- e_j , eii ,

and the intrinsic dissipation,

_/f_ _:,i > 0, (5)
O_j

where Q_ is the plastic strain, which is deviatoric. It evolves according to a separate evolution
equation (13).

If we assume that the complementary free energy (1) is given by

thermoelastic contribution

- 4--_ - 18---_°iiajj -- OtAT 6rii -- SoAT - C T - To 1

+ tt_i_j + N _ SijS_j - _#&j + A[S,.,,_] ,

viscoplastic contribution

+

(6)

then we obtain--from (3) and (4)--the constitutive equations for an isotropic Hookean material ;
they are:

AS = a aii+ (C/T)AT , (7)

ai_ = 3_ (e. - aAT&i) , (8)

and

provided that

Si, = 2# (Eij - Q_.) , (9)

OA -N OA
- (10)

OSij 2H O_i.i "

Here/_ and a are the elastic shear and bulk moduli, a is the coefficient of thermal expansion, C is

the specific heat, So and To are the initial values of entropy and temperature with AS = S - So

and AT = T - To, and Eij = eij- 1/3emdflj is the deviatoric strain. The first three terms in

the viscoplastic contribution to • are introduced to remove unwanted cross products that would

otherwise appear in (9) because of (4) [2]. One also obtains

O/3ij - 2H lJij _-_Sij = 2H Xij O-_ij ' (11)

which defines the thermodynamic force conjugate to _ij. As a consequence, (5) becomes

( 0n)aijgi_ - 2H Xij _ fCij >_ O, (12)



which describesthe intrinsic dissipationpropertiesof our material. The function A, which is

constrained by (10), is introduced into _ to affect the intrinsic dissipation (12); its form is model

dependent.

For the evolution of plastic strain, we shall consider that

where the back stress,

Sij - Bij
(13)

Bij = 2Hflij = 2Hxij + NSij , (14)

accounts for kinematic behavior, with H > 0 being its modulus and 0 _< N < 1. The norms used are

defined by III II= ¢1/2 IijIij where Iij is any deviatoric stress-like quantity, and by HJ II=

where Jij is any deviatoric strain-like quantity. These von Mises norms are scaled for shear.

1 Model I

The classical, nonlinear, kinematic hardening model [3, 4] has an evolution of internal state de-

scribed by

.p HXij ][_p 1[ (15)
fCij = eij L

where L is the limiting state for the back stress Bij. There is no stress rate term in the evolution

of flij for this model, i.e. N = 0 in (2), and consequently

(., B,, ]]_p[,) (16)Bij = 2H cij 2L

describes its evolution for the back stress. Because N = 0, the last three terms in the complementary

free energy (6) do not contribute to the dissipation in this model; its intrinsic dissipation (12) is

therefore given by

-- II 'll >--0, (17)

and it is always satisfied. Hence, Model I is thermodynamically admissible.

2 Model II

This model uses the same description for the irreversible evolution of internal state that Model I

uses, viz. (15). In addition, it assumes that 0 < N < 1, which introduces a reversible attribute to

the evolution of internal state. As a result,

describes this model's evolution for the back stress. Model II reduces to Model I when N = 0.

As Lubliner [1] discussed in his paper, one can always (in principle) transform from an internal

state variable whose evolution contains terms that are linear in the external variable rates, to

another internal state variable where there are no external variable rates present in the evolution

equation. This is accomplished in our case by considering the linear transformation

2H

Xij - 1 - N Xij = 2Hrxij , (19)



wherethevariableXij is a back stress, but different from Bij, with H _ = H/(1 -N) as its associated

hardening modulus. This transformation enables the flow law (13) to be rewritten in an equivalent
form as

g_ = 1/2II_'li • (20)
'_ xll

Likewise, it allows the evolution equation for back stress (18) to be rewritten in the equivalent form

£,j = 2H' (_., X,J2L,I1_11) ' (21)

where L _ = L/(1 - N) is the limiting state for the back stress Xij. Upon comparing (20) and

(21) with (13) and (16), one observes that they are identical in mathematical structure, but with
different values for their constants. These differences lead to differences in the intrinsic dissipation

properties of the material [2].

From the perspective of material science [5], the physically correct, internal, state variable has an

evolution equation with no Sij or T dependence. This coincides with the experimental observation

that an instantaneous change in either stress or temperature does not produce an instantaneous

change in a material's internal structure, i.e. its dislocation structure. Consequently, the back

stress Xij is the physically correct back stress for Model II, and it is referred to as the physical

hack stress. (The back stress Bij is the physical back stress of Model I.)

A description of Model II's dissipation response requires knowledge of its material function A,

which is found in the expression for the complementary free energy (6). This function is evaluated

by combining (12), (14), (15), (19), and (20), and then using A to cancel out those terms in

the dissipation inequality that can become negative valued. This process leads to the differential

equation

)o&--_- 1 - N _-_ S_j - _,j , (22)

which is the simplest of several possible solutions. This equation can be integrated, in conjunction

with the constraint given in (10), to produce

which when substituted into (6) defines • for Model II; it is the basic constitutive equation of this

particular model. It follows then that the intrinsic dissipation (12) for Model II is given by the

inequality

(,,S-X,,+ ''X''_)L-_ _ II_nll > 0, (24)

and it is always satisfied. Hence, Model II is thermodynamically admissible. Notice the similarity

between (17)and (24).

3 Model III

This model considers the irreversible evolution of internal state to be described by

)_i/= _,Pj L '
(25)
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whichdiffersfrom (15)by theexchangeof Xij with fllj in the dynamic recovery term. Like Model II,

this model takes 0 < N < 1, and therefore

/_ij = 2H Qj 2L II_PII + NSij (26)

describes the evolution for the back stress Bij. Equation 26 was first proposed by Ramaswamy

et al. [6]. Notice that the only difference between (16) and (26) for Models I and III is the presence

of the term NSij found in (26). Model III reduces to Model I when N = 0.

Using the same linear transformation that was used in Model II, i.e. (19), one determines that

Model III has the same transformed flow law (20) as Model II, but it has a different evolution

equation for the physical back stress Xij, viz.

J(iJ -12H-N- ( _i_- (1- N)X'j + NS'j2L ']kn][) . (27)

To the best of our knowledge, this ia a new expression for the evolution of the physical back stress.

Here N proportions the dynamic recovery between the physical back stress Xij and the applied

stress Sij.

We set out to derive the dissipation response of Model III as we did for Model II. We begin by

considering a decomposition

A = A_ + A2, (28)

where A1 is taken to be given by (23), i.e. A1 is the A of Model II. The remaining function is

evaluated by combining (12), (14), (19), (20), and (25), and then using A2 to cancel out those

remaining terms in the dissipation inequality that can become negative valued. Because of the

constraint equation (10), one obtains two partial differential equations, viz.

OA_ N - 2Hflij ij (29)
0S_---_= 2L(1 - N) Ske_ke 2H/3II ,

0A2 _ -H - 2Hi3ij ij (30)
Ol3ij L(1 - N) Skel3ke -- 2H/3[[

which when integrated will lead to the complementary free energy • for Model III, i.e. its fun-

damentai constitutive equation. We have not integrated these equations. For our purpose, it is

sufficient to know only that A exists. The intrinsic dissipation (12) for Model III is therefore given

by the inequality

I[n II_IlS - Xll + LCi--=N)JI1+_11---O, (31)

and it is always satisfied. Hence, Model III is also thermodynamically admissible.

A preliminary study of these three models [7] indicates that Model III may be able to predict

realistic ratchetting behavior; whereas, Model I (and therefore Model II) is known to overpre-

dict ratchetting behavior [8]. Continued research is required to better understand the predictive

capabilities of Model III.
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